On Short Sums Involving Fourier Coefficients of Maass Forms

نویسندگان

چکیده

Nous étudions les sommes des valeurs propres opérateurs de Hecke formes paraboliques Hecke–Maass pour le groupe SL(n,ℤ) avec n≥3 quelconque, sur intervalles courts d’une certaine longueur, en admettant l’hypothèse Lindelöf généralisée et une estimation l’exposant direction la conjecture Ramanujan–Petersson, un peu plus forte que celle qui est actuellement connue. En particulier, dans cette situation, nous donnons évaluation asymptotique du deuxième moment question.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Sums of Fourier Coefficients of Cusp Forms

in case f(n) is the Fourier coefficient of a holomorphic or non-holomorphic cusp form. We shall first deal with the latter case, which is more complicated. Let as usual {λj = κj + 14} ∪ {0} be the discrete spectrum of the non-Euclidean Laplacian acting on SL(2,Z) –automorphic forms. Further let ρj(n) denote the n-th Fourier coefficient of the Maass wave form φj(z) corresponding to the eigenvalu...

متن کامل

Coefficients of Harmonic Maass Forms

Harmonic Maass forms have recently been related to many different topics in number theory: Ramanujan’s mock theta functions, Dyson’s rank generating functions, Borcherds products, and central values and derivatives of quadratic twists of modular L-functions. Motivated by these connections, we obtain exact formulas for the coefficients of harmonic Maass forms of non-positive weight, and we obtai...

متن کامل

Rankin-selberg without Unfolding and Bounds for Spherical Fourier Coefficients of Maass Forms

We use the uniqueness of various invariant functionals on irreducible unitary representations of PGL2(R) in order to deduce the classical Rankin-Selberg identity for the sum of Fourier coefficients of Maass cusp forms and its new anisotropic analog. We deduce from these formulas non-trivial bounds for the corresponding unipotent and spherical Fourier coefficients of Maass forms. As an applicati...

متن کامل

Fourier Coefficients of Harmonic Weak Maass Forms and the Partition Function

In a recent paper, Bruinier and Ono proved that certain harmonic weak Maass forms have the property that the Fourier coefficients of their holomorphic parts are algebraic traces of weak Maass forms evaluated on Heegner points. As a special case they obtained a remarkable finite algebraic formula for the Hardy-Ramanujan partition function p(n), which counts the number of partitions of a positive...

متن کامل

Fourier Coefficients of Modular Forms

These notes describe some conjectures and results related to the distribution of Fourier coefficients of modular forms. This is a rough draft and these notes should forever be considered incomplete.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal de Theorie des Nombres de Bordeaux

سال: 2021

ISSN: ['1246-7405', '2118-8572']

DOI: https://doi.org/10.5802/jtnb.1142